

NATIONAL ENERGY TECHNOLOGY LABORATORY

A National Resource Assessment: the Opportunity for CO2 Enhanced Oil Recovery in the United States

Phil DiPietro

Director, Situational Analysis and Benefits Division, Office of Systems, Analyses and Planning (OSAP), National Energy Technology Laboratory

Presented at the Workshop on CO₂ EOR and Storage Beijing, China October 26, 2009

- I am visiting you from the National Energy Technology Laboratory within the United States Department of Energy on the kind invitation of Dr. Wang Daofu
- My colleagues and I have conducted an assessment of the opportunity for carbon dioxide enhanced oil recovery (CO₂ EOR) in the United States.
- I will tell you about the study, what we discovered, and lessons learned.

Acknowledgements

- This work was performed by the United States Department of Energy's National Energy Technology Laboratory in collaboration with Advanced Resources International (ARI)
- Under contract to NETL, ARI brought their "Large Oil Fields
 Database" to bear on the task. ARI also exercised and refined the
 PROPHET model to perform the reservoir simulations
- Collaborators include Vello Kuuskraa, George Koperna, Robert Ferguson, and Tyler Van Leeuwen from ARI and Don Remson and Bob Dilmore from NETL

Purpose of the CO₂ EOR Assessment

- Quantify the amount of crude oil that could be produced in the United States with CO₂ EOR
- Quantify the amount of CO₂ that could be sequestered as a result
- Estimate the impacts of advanced technologies and field practices

Value of a National CO₂ EOR Assessment

- Policy makers can see the role that CO₂ EOR could play in national priorities
 - (1) reduced GHG emissions
 - (2) reduced crude oil imports
- Businessmen can see the potential size of the market and the motivation for developing capability
- Research and development managers can see areas of technology that can influence CO₂ EOR

Analysis Summary

447 Bbbls * 68% * 20% * 56% = 34 Bbbls

- 447 Bbbls original oil in place for the 6,000+ reservoirs in our database (represents 75% of total U.S. resource)
- 68% percent of resource screened as favorable to CO₂ EOR
- 20% average incremental recovery from CO₂ EOR as a percent of OOIP (stream tube model, WAG, 1.0 pore volume injection)
- 56% portion of technically recoverable resource that is economic at \$70/bbl and 45 \$/mtCO₂ stored
- 34 Bbbls CO₂ EOR opportunity for United States

Field Properties Database

- Developed by Advanced Resources International
 - Information on over 6,000 reservoirs
 - Data gathered from over 30 years of analysis projects
- Types of information

Field Name Reservoir Name

Location

(Latitude/Longitude)

Original Oil in Place (OOIP)

Estimated Ultimate

Recovery (EUR)

Remaining Oil Resource

Lithology

Depth

Thickness

Oil Gravity/Viscosity

Pressure (Original &

Current)

Temperature

Permeability

Porosity

Fluid Saturations (Oil,

water)

Dykstra-Parsons

Screening Criteria

Field minimum size	50 million bbls OOIP			
Reservoir minimum depth	3,000 feet			
Crude oil minimum gravity	17.5 API			

Porosity not a screening criteria

Sandstone/carbonate not a screening criteria

4,879 reservoirs out of 6,354 eliminated from further consideration

Remaining 1,655 fields represent 68% of OOIP

CO₂ Prophet CO₂-EOR Screening Model

- Initially developed by Texaco in 1986 under a DOE collaboration
- Defines streamtubes to describe fluid flow between injection and production wells
- Performs oil displacement and recovery calculations along the streamtubes using finite difference routine
- Mixing parameters specify fluid mixing/viscous fingering behavior
- Key model inputs:
 - Fluid properties
 - Reservoir properties
 - Relative permeability parameters
 - Flood pattern configuration
 - CO₂ and water injection scenario
 - Miscible or Immiscible
- Available at: http://www.netl.gov.doe/technologies/oil-gas/software/
- Advanced Resources International has enhanced the model

Miscibility determination

- Assume reservoir pressure gradient 0.6 psi/ft
- Minimum Miscibility Pressure (MMP) derived from crude oil API gravity
 - Cronquist: $MMP = 15.988*T^{(0.744206+0.0011038*MWC5+)}$
 - Mungan: MW C_5 + = 4248 * (API)-0.87
 - T is current reservoir temperature
 - MW C₅+ is the molecular weight of pentanes & heavier fractions of the oil
 - Impurities not included in the Cronquist exponent (H₂S, N₂, CH₄)
 - recent work by Yuan, Johns, Egwenu, et.al., showed the Cronquist correlation provided the best match

Current Best Practice CO₂ Flood Scenario

- 1.0 pore volume CO₂ injection
- Tapered water-alternating-gas
- 5 spot pattern (1:1 injection to producer well ratio)
- Pattern acreage variable
- No water slug at the end to recover CO₂
- Fluid and reservoir properties for each field taken from the database, expertise used to fill gaps in the data
 - Analogs from similar fields
 - Estimates based on well performance during primary and secondary production

Economic Analysis

- Spreadsheet-based cash flow model calculates the rate of return on an investment in a CO2 flood at a given reservoir
- PROPHET model results provide:
 - Annual CO₂ purchases, CO₂ recycle rate, and crude oil flows
- Heuristics, judgment are used to estimate:
 - Capital cost of drilling and re-working wells
 - Electricity requirements for recompression, water injection, etc.
 - Royalty and ad valorem taxes
 - Other operating charges
- If the rate of return on capital is greater than 15%, the reservoir is considered economically recoverable
- Fields representing 56% of technically recoverable resource pass the rate of return benchmark

Analysis Summary (recap)

447 Bbbls * 68% * 20% * 56% = 34 Bbbls

- 447 Bbbls original oil in place for the 6,000+ reservoirs in our database
- 68% percent of resource screened as favorable to CO₂ EOR
- 20% average incremental recovery from CO₂ EOR as a percent of OOIP*
- 56% portion of technically recoverable resource that is economic at \$70/bbl and 45 \$/mtCO₂ stored
- 34 Bbbls CO₂ EOR opportunity for United States

^{*} stream tube model, WAG, 1.0 pore volume injection

Optimistic Estimate

- Redo PROPHET model runs for each reservoir with inputs adjusted to characterize an advanced technology case
 - Longer CO₂ injection (1.5 pore volume)
 - Mobility ratio enhancers (water viscosity 3 cps)
 - Increased recovery from poorly swept zones within reservoirs
- Increase CO₂ EOR economically recoverable resource by 74%, from 34 to 59 billion barrels

Conservative estimate

Technically Recoverable from CO₂ EOR, lower 48 states, 1.0 pore volume, Bbbls

- Remove Alaska
- Remove off-shore Gulf of Mexico
- Remove reservoirs that have combined primary and secondary recovery under 32% OOIP - a proxy for difficulty in recovering the remaining oil
- Technically recoverable CO₂ EOR opportunity is reduced to 27 billion barrels
- Apply the 56% ratio to estimate 15 billion barrels economically recoverable

Environmental Assessment

- Compared to primary and secondary recovery, CO₂ EOR requires a large amount of energy per barrel of crude oil produced
- NETL has performed a life cycle analysis of a CO₂ EOR flood
- We have found that a 1.0 pore volume flood consumes 0.14 btus of energy per btu of crude oil produced
 - Compression of recovered CO₂
 - Injection pump for produced brine
 - Tank Battery, processing of produced hydrocarbon/water
- The resulting upstream GHG emissions are 77 kgCO2_e per barrel
 - Includes upstream emissions from power consumed at the EOR facility (37%)
 - Does not include GHG emissions from capturing CO2

The high technology CO₂ EOR scenario produces more oil, uses more energy

	CO ₂ EOR scenario		
Hydrocarbon Pore Volume CO ₂ Injected	1.0	1.5	
U.S. Economically Recoverable Oil (Billion barrels)	34	59	
CO ₂ storage from EOR (Billion mt CO ₂)	9.0	12.0	
CO ₂ sequestration (Mscf/bbl)	4.9	3.8	
Duration of single flood (years)*	19	28	
Energy use (btu consumed per btu oil equivalent produced)*	0.14	0.21	
CO ₂ emissions (kg CO ₂ e/bbl crude oil)	77	109	

^{*} Estimated from streamtube modeling of average Permian Basin reservoir with tapered WAG injection in a 40 acre 5 spot pattern, CO_2 injection rate of 0.25 MMscf/day, water injection rate of 500 bbl/day

Field level assessment enables regional analysis and systems planning

Basin-level Data

		al in abase	Favorable to CO ₂ EOR		CO ₂ EOR Prodn.,	CO ₂ EOR technical opportunity	Scale up to account	CO ₂ EOR technical opportunity
Basin/Area	#	OOIP (Bbbls)	#	OOIP (Bbbls)	% OOIP (1.0 PV)	(database), Bbbls	for all fields	(national), Bbbls
1. Alaska	45	50.7	33	42.5	20%	8.6	1.0	8.6
2. California	187	75.2	86	31.6	18%	5.7	1.1	6.3
3. Gulf Coast	298	26.4	155	20.2	21%	4.2	1.7	7.0
4. Mid-Continent	246	53.1	102	28.0	23%	6.4	1.7	10.7
5. Illinois/Michigan	172	12.0	72	4.6	17%	0.8	1.5	1.2
6. Permian	228	72.4	190	63.1	21%	13.5	1.3	17.8
7. Rockies	187	23.7	92	18.0	16%	2.9	1.4	4.2
8. Texas, East/Central	213	67.4	161	52.4	21%	10.9	1.6	17.6
9. Williston	95	9.4	54	7.2	25%	1.8	1.6	2.5
10. Louisiana Offshore	4,495	46.1	642	29.6	20%	5.8	1.0	5.8
11. Appalachia	188	10.6	68	7.4	16%	1.2	1.3	1.6
Total	6,354	447.0	1,655	304.6	20%	61.8	1.34	83.3

Growth of CO₂-EOR Production in the U.S.

Current CO₂ EOR production is 0.25 MM bbls/day

The mid level estimate for CO₂ EOR economically recoverable resource is 34 B bbls

34 B bbls produced over 50 years is equivalent to ~2 MM bbls/day – an 8 fold increase over the current level

Next Steps

- History match and refine the PROPHET model
- Explore the opportunity for CO₂ injection in residual oil zones
- Publish a life cycle emissions analysis of different CO₂ EOR operational scenarios

Summary

- The middle estimate for the CO₂ EOR opportunity in the United States is 34 billion barrels of oil (economically recoverable)
 - Optimistic estimate 59 B bbls
 - Conservative estimate 15 B bbls
- That much CO₂ EOR could provide storage of 7-12 B mt CO₂
- A 1.0 pore volume CO₂ flood consumes 0.14 btus of energy for each btu of crude oil produced, emits 77 kg CO₂ per bbl of oil

Thank you!